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Abstract 
The aim of this work is; Firstable, to obtain an expression using multiple linear regressions to evaluate 

relationships between nitrogen and soil properties (organic matter OM, C to N ratio, clay, pH). Secondly, we 

perform a path analysis using structural equations modeling, in order to investigate simultaneously the 

interactions between the different components of the soil properties and their relationships with nitrogen. 

Using 2 groups of soils from Tunisia (Luvisols and Cambisols), we carried out multiple linear regressions 

integrating different soil physical and chemical properties and we searched those regressions with nitrogen. 

Results show that Luvisols and Cambisols presented different relationships among their properties. Thus, we 

searched equations for both groups of soils; (1) Luvisols: N=0.047 + 0.032OM + 0.001Clay +ε, and (2) 

Cambisols: N=0.007 + 0.021OM + 0.005Clay +ε. Using AMOS, the structural equations modeling allows, to 

test in a simultaneous analysis the entire system of variables, in order to determine the extent to which it is 

consistent with the data. 
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1. Introduction 

Though “azote”, the French name for nitrogen given by 

Lavoisier, means “lifeless” and inert, this element is a 

major constituent of living organisms which catalyze key 

steps in biogeochemical cycling (Pansu et al., 1997). 

Nitrogen was predicted by different  biochemical 

properties (Trasar-Cepeda et al., 1998), However, 

biochemical properties are also closely related to 

physical and especially chemical soil properties because 

of the dynamic and interactive nature of soil process 

(Schoenholtz et al., 2000). 

MLR constitutes an accurate tool to evaluate soil 

quality, since it generates a minimum data set of 

indicators (Doran and Parkin 1996). MLR have been 

successfully used by different authors to evaluate soil 

quality, being used in natural forest soils balanced with 

the overall environment (Trasar-Cepeda et al. 1998) or in 

agriculture soils under different management (Lentzsh et 

al., 2005). The objective of the present work is: firstly, to 

establish a model using MLR based on different soil 

physical and chemical properties, in different zones from 

Tunisia, so that we can searched equations (N = β0 + β1 

X1 +  β2 X2 +...+ βn Xn + ε  Where, N: the dependent 

variable and X1,X2….Xn: independent variables as well 

as the  soil physical and chemical properties ) for both 

groups of soil. Then, all the variables would be included 

simultaneously into single model in order to test the 

interactions between the independents variables as well 

as their contributions on the dependent variable (N). 

Thus, the objective of the present study was to 

develop statistical procedure to predict N from readily 

available soil properties for soils of the semi-arid and 

arid regions of the Mediterranean basin, using data 

available at the Tunisia scale. 
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2. Material and methods  

 

2.1. Data Collection  

Tunisia is situated northern Africa between the 

latitudes 32° and 38° north and between the longitudes 

7° and 12° east. It is located at the junction of the 

western and oriental Mediterranean and covering a 

surface of 164000km
2
. In spite of this small surface, nor 

the climate neither the vegetation are uniform. In fact, 

the geographical position and the general orientation of 

the main relieves are influenced at the North by the 

Mediterranean Sea and at the South by the Sahara. 

Concerning the Center, it is under the conjugated effect 

of these two elements. Even the dominance of calcareous 

rocks, geology consists of large range of type of rocks 

We used a data base, of 218 elements; we study soil 

samples of 0-15 cm, depths two or three pits per plot. 

Samples were analyzed for texture (hydrometer method), 

pH (using pH meter), total nitrogen (khjeldal method), 

and organic matter (with carmograph). 

The relationship between nitrogen and other soil 

parameters were investigated utilizing data from Tunisia. 

The database was constructed from soil profile 

information for soils pits surveyed by Tunisian research 

groups and the IRD (ex-ORSTOM) project, the Ministry 

of Agriculture of Tunisia (Direction de Sols) and 

Tunisian thesis reports. The data contained information 

for OM, pH, Clay and C/N.  

 

2.2. Data Analysis 

Descriptive statistics and multiple linear regression 

analyses were performed with SPSS. Multiple linear 

regression (MLR) analyses were carried out on all the 

data and according to soil groups. 

 
Table 1 Descriptive statistics for all the data 

 

 N Min. Max. Mean CV (%) ٭ SD* 

Clay 218 1 62.41 23.68 54.79 12.98 

Fine Silt 218 0 44.68 19.12 56.99 10,89 

Coarse Silt 218 3 58.6 14.69 59.51 8.74 

Fine Sand 218 1.24 46 22.83 41.04 9.37 

Coarse Sand 218 1.49 43 19.28 55.70 10.74 

pH 218 5.6 8 6.97 11.37 0.79 

OC 218 0.6 7.92 3.15 56.64 1.79 

OM 218 0.9 13.72 5.49 55.47 3.04 

Nitrogen 218 0.05 1 0.25 51.42 0.13 

C/N 218 4.58 22.3 12.86 34.89 4.49 

 CV = Coefficient of variation ; * SD = Standard deviation ٭

 

 

The mean N value was 0.25 varying between 0.05 and 

1 and had a CV of 51.42% (Table 1). All chemical 

properties, except pH and C/N measurements, had a 

coefficient of variation (CV) > 41%. 

 

The procedure used was a stepwise linear regression, 

which allowed independent variable to be individually 

added or deleted from the model at each step of the 

regression. A MLR method was used because it is a 

practical tool that furnishes direct quantitative results, 

and also because the data set was not adapted to spatial 

analysis such as geostatitics due to lacking or imprecise 

geographic coordinates. 

In the linear regressions, only parameters with 

statistical significance at the 0.01 significance level were 

considered for computing predictive equations and 

reporting results. Standard error of the prediction (SEP) 

and percentage of variance explained, through R
2
 values, 

were used as means to evaluate the reliability of the 

models.  

 
Table 2 Summary of the linear regressions predicting Nitrogen 

 

 

Model 1 : Cambisols Model 2 : Luvisols 

β 
t- 

value 
Sig.t β 

t- 

value 
Sig.t 

Clay  0.005 7.890 0.000 0.001 2.131 0.035 

OM 0.021 11.76 0.000 0.032 25.79 0.000 

Const. 0.007 0.047 

R 0.957 0.941 

R 2 0.916 0.886 

Ad.R 2 0.915 0.884 

SE 0.047 0.058 

F test  525.780 450.278 

Sig.  0.000 0.000 

 

 

As can be seen in the case of all the MLR regression 

analyses, the Clay and OM measures are statistically 

significant in estimating the Nitrogen (P<0.00). The 

multiple R coefficient indicates that the correlation 

between soil properties and nitrogen is moderate (the two 

multiple R >0.94). According to R square statistic, 

91.6% of the total variance for the estimation of nitrogen 

is explained by the first model. Similarly 88.6% of the 

total variance is explained by the second regression 

model, which estimates the nitrogen in the Cambisols 

and the nitrogen in the Luvisols respectively.  

The models were also checked to see if they were 

prone to any multicollinearity effect. The variance 

inflation factor (VIF) values obtained were all close to 

one and thus, there was no evidence of multicollinearity 

(Hair et al. 1998). In terms of the relative importance of 

the estimation of a dependent variable, it can argued that 

the organic matter makes the largest contribution across 

the two models (the β coefficients hold the largest 

values). An examination of t-values also reveals an 

identical descending order of the factors that contribute 

to the estimation of nitrogen in both of soils (Bring, 

1994). 

The positive sign of the beta coefficients and t-values 

pertaining to these variables indicates that there is a 

positive relationship between nitrogen and the tow 

element of soil properties (OM and Clay). The selected 

equations for Luvisols and Cambisols; (i) Luvisols: N= 

0.047 + 0.032 OM + 0.001Clay + ε, and (ii) Cambisols: 

N= 0.007 + 0.021 OM + 0.005 Clay + ε.  
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The plot of the predicted data against the observed 

shows that there is a good agreement of estimation (Fig.1 

and Fig.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Luvisols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Cambisols 

Where;  

N: the measured nitrogen 

Nm: the nitrogen calculated with the model. 

 

The second step of our study consist to include 

simultaneously all the variables in a conceptual model in 

order to test the potential interactions between them. The 

structural equation modelling was used to achieve our 

aims. 

 

2.3. Structural Equation Modeling (SEM) 

Structural equation modeling (SEM) is a statistical 

methodology that takes a confirmatory approach to the 

analysis of a structural theory bearing on some 

phenomenon. Typically, this theory represents “causal” 

processes that generate observations on multiple 

variables (Bentler, 1988). The structural equation 

modeling conveys that the causal processes under study 

are represented by a series of structural equations. And 

that these relations can be modeled. The model can then 

be tested statistically in a simultaneous analysis of the 

entire system of variables to determine to witch it is 

consistent with the data. 

Several aspects of SEM set it apart from the older 

generation of multivariate procedure (Fornell, 1982). 

First, as noted earlier, it takes a confirmatory, rather than 

an explanatory, approach to the data analysis (although 

aspects of the latter can be addressed).  Furthermore, by 

demanding that the pattern of intervariable relations be 

specified a priori, SEM lends itself well to the analysis of 

data for inferential purpose. By contrast, most other 

multivariate procedures are essentially descriptive by 

nature, so that hypothesis testing is difficult, if not 

impossible. Second, although traditional multivariate 

procedures are incapable of either assessing of correcting 

for measurement error, SEM provides explicit estimates 

of these error variance parameters (Byrne, 2001).  

 

2.4. Modeling the Relationships between the different 

variables 

We developed a generalized conceptual model 

illustrated in Fig. 3 this model hypothesizes the potential 

interactions between the independents variables (OM, 

pH, clay, C/N) and their contributions on the dependent 

variable (N). The input variables were chosen because 

they are known to influence N (OM and soil texture) or 

because they are easily obtained (pH). 

Net accumulation of nitrogen in soil is constrained by 

the amount of organic matter and it is minimum C to N 

ratio (Shiper et al., 2004, Daniel et al., 2007), it appears 

when the nitrogen accumulates the C to N ratio decline 

(Sparling and Shipper 2002). Sarrah et al., (2006) found 

that changes in soil pH significantly affect N and C to N 

ratio, soil ph often hypothesize to be a major factor 

regulating organic matter (Sarrah et al., 2006, Paul et 

Clark 1989). And Danniel et al., (2007) found significant 

correlation between clay and nitrogen, clay and organic 

matter, clay and pH. C to N ratio for two Mediterranean 

soils (Fersiallitic and Brown) were different, this is 

probably due to the clay soils (Pansu et al., 1997). In the 

MOMOS model C to N ratio evolution varied with the 

organic matter compartments. 

 Fig. 3 depicts the causal relationship among 

exogenous and endogenous variables. An exogenous 

variable whose causes lie outside the model. In these 

cause clay is the only exogenous variable in the 

structural model. In contrast to exogenous variables, the 

postulated causes of endogenous variables are included 

in the model. In the current model organic matter, C to N 

ratio, pH, and N are all endogenous variables. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 A conceptual model of factors influencing nitrogen 
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3. Results and discussion 

 

All factor loadings that were tested had t-values 

greater than 1.96 all of the path coefficients were 

significant. The goodness of fit indices for the structural 

model that are shown in table 3 indicated the model has a 

good fit of the data. 

 
Table 3 Fit indices for the structural model 

GFI AGFI NFI RFI IFI 

0.99 0.98 0.99 0.99 1.00 

TLI CFI RMR PGFI RMSEA 

1.00 1.00 0.036 0.067 0.00 

 

 

The root mean square (RMR) residual represents the 

average value across all standardized residuals, and 

ranges from 0 to 1; in a well-fitting model this value will 

be small than 0.05 (Byrne, 2001). Turning to table 3, we 

see that the RMR value for our model is 0.036; we can 

conclude that the model fit the data well. 

 

The adjusted goodness of fit index (AGFI) differs 

from the goodness of fit index (GFI) only in the fact that 

it adjusts for the number of degree of freedom in the 

specified model. They address the issue of parsimony by 

incorporating a penalty for the inclusion of additional 

parameters. The GFI and AGFI can be classified as 

absolute index of fit (Hu and Bentler 1995). Although 

both index range from 0 to 1, with values close to 1 

being indicative of good fit, Joreskog and Sorbom 

(1993), theoretically it is impossible for them to be 

negative; Fan, Thompson and Wang (1999) further 

cautioned that GFI and AGFI values can be overly 

influenced by sample size. Based on GFI and AGFI 

values reported in table 3 (0.99 and 0.98 respectively), 

we can once again conclude that our model fits the 

sample data fairly well.  

 

Parsimony goodness fit index (PGFI), was introduced 

by James et al., (1982) to address the issue of parsimony 

in SEM. The PGFI takes in to account the complexity 

(i.e., number of estimated parameters) of the 

hypothesized model in the assessment of overall model 

fit, as such, “to logically interdependent pieces of 

information” the goodness of the fit of the model (as 

measured by the GFI) and the parsimony of the model, 

are represented by a simple index (the PGFI), thereby 

providing a more realistic of evaluation of the model 

(Mulaik et al., 1989). Typically, parsimony based 

indexes have lower than the threshold level generally 

perceived as acceptable for other normed indices of fit. 

Thus our finding of a PGFI value of 0.067 would see to 

be consistent with our fit statistics. 

 

Normed Fit Index (NFI) has been the practical 

criterion of choice, as evidenced in large part by the 

current classic of status of its original paper (Bentler, 

1992). However, addressing evidence that the NFI has 

shown a tendency to under estimate fit in small samples, 

Bentler (1990) revised the NFI to take sample size into 

account and proposed the CFI (Comparative Fit Index). 

Values for both the NFI and CFI range from 0 to 1. Each 

provides a measure of complete covariation in the data, 

although a value > 0.90 was originally considered 

representative of a well fiting model. (Bentler, 1992), a 

revised cut off value close to 0.95 has recently been 

advised (Hu and Bentler 1999). As shown in table 3, 

both the NFI (0.99) and CFI (1.00) were consistent in 

suggesting that the model represented an adequate fit of 

the data. 

 

The relative fit index (RFI) (Bollen, 1986) represents 

a derivative of the NFI and the CFI, the RFI coefficient 

values range from 0 to 1 with values close to 0.95 

indicating superior fit (Hu and Bentler 1999). The 

incremental index of fit (IFI) was developed by Bollen 

(1989) to address the issue of parsimony and sample size 

which were known to be associated with the NFI. As 

such its computation is basically the same as the NFI, 

except that degree of freedom are taken into account. 

Thus, it is not surprising that our finding of IFI = 1.00 is 

consistent with that the CFI in reflecting a well fitting 

model. Finally the Tucker Lewis index (TLI), Tucker 

and Lewis, (1973), consistent with the other index noted 

here, yields values ranging from 0 to 1 (Hu and Bentler, 

1999). 

 

The root mean square error of approximation 

(RMSEA) is one of the most criteria in covariance 

structure modeling. It takes into account the error of 

approximation and asks the question “how well would 

the model, with unknown but optimally chosen 

parameter values, fit the covariance matrix if it were 

available?” (Browne and Cudeck, 1993), values less than 

0.05 indicate good fit. Turning to table 3, we see that the 

RMSEA value for our model is 0.000; we can conclude 

that the model fits the data well. 

The general purpose of this study was to investigate 

simultaneously the interactions between the different 

components of the soil properties. Consistent with 

previous findings (Körschens, 1980; Nichols, 1984; Van 

Veen et al., 1984; 1985; Körschens, 1998) the capacity 

of soils to protect organic matter against microbial 

decomposition and microbial biomass against cell death 

or predation seems to depend on the soil clay content. 

Soil clay content is used as an abiotic factor modifying 

microbial decomposition activity or defining the size of 

protected pools of organic matter in models of soil 

organic matter turnover (Hansen et al., 1990; Franko, 

1996; Molina, 1996; Patron, 1996). 

Corinna Mertz et al., (2005) suggest that C to N ratio 

differ between the clay sub-fractions, organic matter in 

the fine clay contains more nitrogen than organic matter 

in the coarse clay. 

The present study suggests that clay correlated with 

soil pH. In fact, Sarrah et al., (2006) found that 

exchangeable aluminium showed clear trends with soil 

pH, that is presents with a significant amount in clay. 
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Based on data from Springob and Kirchmann, (2002), 

Gyldenkaerne et al., (2005), suggested that organic 

matter is related to the soil C to N ratio. Thus, the 

organic matter would decrease when soil C to N ratio 

increase. 

The C to N ratio relates the soil N (Springob and 

Kirchmann, 2003) as well as soil pH has an effect on the 

C to N ratio (Schmidt, 1982). 

 

3.1. Effects of Exogenous and Endogenous Variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Effects of exogenous and endogenous variables 

 

All parameter estimates in the model were significant 

at  = 0.05. The table 4 reports the coefficients for the 

paths in the model. They represented the strength of the 

direct effect of an exogenous variable on an endogenous 

variable, and that of one endogenous variable on another. 

Bollen (1989) noted that the direct and indirect 

effects can help to answer important questions regarding 

the influence of one variable on another, but it is the total 

effect that is more relevent. He explained that the direct 

effect could be misleading when the indirect effect has 

an opposite sign, for in such cases the total effect may 

not be as strong as the direct effect shows. 

The direct, indirect and total effects of all 

endogenous variables in the model are reported in table 

4.  

Direct effects, according to Bollen (1989) are the 

influence of on variable on another that are not mediated 

by any other variable. Indirect effects are ones that are 

mediated by at least one other variable, and the total 

effects are the sum of direct and indirect effects. 

Indirect effects are calculated by multiplying all the 

path coefficients for each route of indirect influence. 

If an independent variable has more than one route of 

indirect influence on a dependent variable, than the 

indirect effects for each route are summed to calculate 

the overall indirect effects of the independent variable on 

the dependent variable (Bollen, 1989). 

The table 4 indicates that clay had a positive direct 

effect on nitrogen (0.001), organic matter (0.206), C/N 

(0.038) and pH (0.01), in addition clay also indirectly 

influenced N through organic matter, C/N, and pH. 

Organic matter is directly and/or indirectly influenced 

by clay, C/N, and pH. 

C/N had a stronger direct effect on organic matter 

(0.409), than did clay (0.206). In addition C/N also 

indirectly influenced nitrogen through organic matter as 

well as C/N is directly influenced negatively by pH and 

indirectly by clay through pH. 

Clay not only directly contributed to nitrogen, But it 

also indirectly influenced nitrogen through 6 routes, the 

first route was through organic matter, the second was 

through C/N, the third was through ph, the forth was 

through C/N  organic matter  N  

The fifth was through pH  C/N  organic matter               

N, while the last route was through pH  C/N  N. 

Nitrogen was influenced positively by clay and 

organic matter and influenced negatively by C/N and ph. 

Organic matter had a stronger direct effect on nitrogen 

than did clay, C/N and pH. 

While pH had the second strongest effect on nitrogen, 

its total effects was the highest in absolute value. 

 

 

3.2. Validity Check 

In order to corroborate the validity of the model, we 

used a second database for verification. This database 

was made of 199 samples utilizing data from Tunisia.  

 

 

Tab. 4 Direct, indirect and total effects of exogenous and endogenous variables 

  pH OM C/N N 

  D I T D I T D I T D I T 

Clay .01 - .01 .206 .01 .216 .038 -.011 .026 .001 -.000185 .0008 

pH - - - - -.458 -.458 -1.120 - -1.12 -.015 -.0035 -.018 

C/N - - - .409 - .409 - - - -.012 .015 .003 

OM - - - - - - - - - .037 - .037 

 

The database was constructed from soil profile 

information for soils pits surveyed by Tunisian 

research groups and the IRD (ex-ORSTOM) project,  

 

 

 

the Ministry of Agriculture of Tunisia and Tunisian 

thesis reports. 
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Table 5 Standard Regression Weighs and t-values 

 
Table 6 Global Fit Indices 

Goodness of fit measure Sample 1 Sample 2 

Stand alone fit measure    

χ2 0.690 0.542 

AGFI 0.981 0.984 

GFI 0.999 0.999 

RMR 0.036 0.033 

RMSEA 0.000 0.000 

Incremental Fit Measures   

NFI 0.999 0.999 

TLI 1.00 1.00 

 

 

Thus, although the χ
2
 static is significant for both 

samples (p<0.01) we conclude that the model has 

been validated successfully and can be seen as 

appropriate for the explanation and prediction of N. 

 

 

4. Conclusion 

The results indicated that MLR constitutes an 

accurate tool to evaluate relationships between 

nitrogen and soil properties. Soils with different 

characteristics, as Luvisols and Cambisols are, do not 

show the same relationships among their properties, 

mainly related to differences in soil organic matter 

content. 

Moreover, it is worth noting that the SEM 

provides an adequate explanation of the 

simultaneously interactions between the variables 

included in the conceptual model. Whereas, as is the 

case with any research, the study presented exhibits 

the limitations that should be considered. First, we 

stress that this model is not designed to include all 

possible influences on nitrogen. We limit our 

consideration to the identified variables simply 

because the focus of the investigation is on the 

composite set links between clay, pH, organic matter, 

C/N and nitrogen. The obvious implication is the 

need for further consideration of similar composite 

models. Additional soil properties should also be 

included. For instance, potential measures can 

include the CaCO3. Furthermore, the influence of 

bulk density, soil organic carbon and electrical 

conductivity (EC) might be a fruitful area of inquiry.  

Although, structural equation modeling 

procedures deal with causal models, they do not 

establish causal relationships. Bollen (1989) asserts 

that “at best they show whether the causal 

assumptions embedded in a model much a sample of 

data”. Thus, results of the study only verify that the 

proposed relationships among variables in the 

conceptual model were supported by the sample data 

collection for this study. An important next step is to 

fit the proposed model to other samples of data so 

that its validity can be examined. This limitation 

provides an opportunity for further research. 
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